Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(22): 2416-2427.e7, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37879337

RESUMO

Axolotl limb regeneration is accompanied by the transient induction of cellular senescence within the blastema, the structure that nucleates regeneration. The precise role of this blastemal senescent cell (bSC) population, however, remains unknown. Here, through a combination of gain- and loss-of-function assays, we elucidate the functions and molecular features of cellular senescence in vivo. We demonstrate that cellular senescence plays a positive role during axolotl regeneration by creating a pro-proliferative niche that supports progenitor cell expansion and blastema outgrowth. Senescent cells impact their microenvironment via Wnt pathway modulation. Further, we identify a link between Wnt signaling and senescence induction and propose that bSC-derived Wnt signals facilitate the proliferation of neighboring cells in part by preventing their induction into senescence. This work defines the roles of cellular senescence in the regeneration of complex structures.


Assuntos
Ambystoma mexicanum , Senescência Celular , Animais , Ambystoma mexicanum/metabolismo , Via de Sinalização Wnt , Células-Tronco , Proliferação de Células , Extremidades
2.
Artigo em Inglês | MEDLINE | ID: mdl-37734866

RESUMO

Optogenetics has emerged over the past 20 years as a powerful tool to investigate the various circuits underlying numerous functions, especially in neuroscience. The ability to control by light the activity of neurons has enabled the development of therapeutic strategies aimed at restoring some level of vision in blinding retinal conditions. Promising preclinical and initial clinical data support such expectations. Numerous challenges remain to be tackled (e.g., confirmation of safety, cell and circuit specificity, patterns, intensity and mode of stimulation, rehabilitation programs) on the path toward useful vision restoration.

3.
Nat Protoc ; 18(6): 1893-1929, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37198320

RESUMO

Induced pluripotent stem cell-derived brain organoids enable the developmental complexities of the human brain to be deconstructed. During embryogenesis, optic vesicles (OVs), the eye primordium attached to the forebrain, develop from diencephalon. However, most 3D culturing methods generate either brain or retinal organoids individually. Here we describe a protocol to generate organoids with both forebrain entities, which we call OV-containing brain organoids (OVB organoids). In this protocol, we first induce neural differentiation (days 0-5) and collect neurospheres, which we culture in a neurosphere medium to initiate their patterning and further self-assembly (days 5-10). Then, upon transfer to spinner flasks containing OVB medium (days 10-30), neurospheres develop into forebrain organoids with one or two pigmented dots restricted to one pole, displaying forebrain entities of ventral and dorsal cortical progenitors and preoptic areas. Further long-term culture results in photosensitive OVB organoids constituting complementary cell types of OVs, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections and electrically active neuronal networks. OVB organoids provide a system to help dissect interorgan interactions between the OVs as sensory organs and the brain as a processing unit, and can help model early eye patterning defects, including congenital retinal dystrophy. To conduct the protocol, experience in sterile cell culture and maintenance of human induced pluripotent stem cells is essential; theoretical knowledge of brain development is advantageous. Furthermore, specialized expertise in 3D organoid culture and imaging for the analysis is needed.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Diferenciação Celular/fisiologia , Prosencéfalo , Organoides , Desenvolvimento Embrionário
4.
Front Neurosci ; 17: 1085282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968488

RESUMO

During spaceflight, humans experience a variety of physiological changes due to deviations from familiar earth conditions. Specifically, the lack of gravity is responsible for many effects observed in returning astronauts. These impairments can include structural as well as functional changes of the brain and a decline in cognitive performance. However, the underlying physiological mechanisms remain elusive. Alterations in neuronal activity play a central role in mental disorders and altered neuronal transmission may also lead to diminished human performance in space. Thus, understanding the influence of altered gravity at the cellular and network level is of high importance. Previous electrophysiological experiments using patch clamp techniques and calcium indicators have shown that neuronal activity is influenced by altered gravity. By using multi-electrode array (MEA) technology, we advanced the electrophysiological investigation covering single-cell to network level responses during exposure to decreased (micro-) or increased (hyper-) gravity conditions. We continuously recorded in real-time the spontaneous activity of human induced pluripotent stem cell (hiPSC)-derived neural networks in vitro. The MEA device was integrated into a custom-built environmental chamber to expose the system with neuronal cultures to up to 6 g of hypergravity on the Short-Arm Human Centrifuge at the DLR Cologne, Germany. The flexibility of the experimental hardware set-up facilitated additional MEA electrophysiology experiments under 4.7 s of high-quality microgravity (10-6 to 10-5 g) in the Bremen drop tower, Germany. Hypergravity led to significant changes in activity. During the microgravity phase, the mean action potential frequency across the neural networks was significantly enhanced, whereas different subgroups of neurons showed distinct behaviors, such as increased or decreased firing activity. Our data clearly demonstrate that gravity as an environmental stimulus triggers changes in neuronal activity. Neuronal networks especially reacted to acute changes in mechanical loading (hypergravity) or de-loading (microgravity). The current study clearly shows the gravity-dependent response of neuronal networks endorsing the importance of further investigations of neuronal activity and its adaptive responses to micro- and hypergravity. Our approach provided the basis for the identification of responsible mechanisms and the development of countermeasures with potential implications on manned space missions.

5.
J Perinat Med ; 51(6): 759-762, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-36474335

RESUMO

The mammalian retina lacks regenerative potency to replace damaged or degenerated cells. Therefore, traumatic or genetic insults that lead to the degeneration of retinal neurons or retinal pigment epithelium (RPE) cells alter visual perception and ultimately can lead to blindness. The advent of human stem cells and their exploitation for vision restoration approaches has boosted the field. Traditionally, animal models - mostly rodents - have been generated and used to mimic certain monogenetic hereditary diseases. Of note, some models were extremely useful to develop specific gene therapies, for example for Retinitis Pigmentosa, Leber congenital amaurosis and achromatopsia. However, complex multifactorial diseases are not well recapitulated in rodent models such as age-related macular degeneration (AMD) as rodents lack a macula. Here, human stem cells are extremely valuable to advance the development of therapies. Particularly, cell replacement therapy is of enormous importance to treat retinal degenerative diseases. Moreover, different retinal degenerative disorders require the transplantation of unique cell types. The most advanced one is to substitute the RPE cells, which stabilize the light-sensitive photoreceptors. Some diseases require also the transplantation of photoreceptors. Depending on the disease pattern, both approaches can also be combined. Within this article, I briefly feature the underlying principle of cell replacement therapies, demonstrate some successes and discuss certain shortcomings of these approaches for clinical application.


Assuntos
Degeneração Macular , Degeneração Retiniana , Animais , Humanos , Degeneração Retiniana/terapia , Epitélio Pigmentado da Retina , Retina , Degeneração Macular/terapia , Células-Tronco , Mamíferos
6.
Front Neurosci ; 16: 951964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36267241

RESUMO

Comprehensive electrophysiological characterizations of human induced pluripotent stem cell (hiPSC)-derived neuronal networks are essential to determine to what extent these in vitro models recapitulate the functional features of in vivo neuronal circuits. High-density micro-electrode arrays (HD-MEAs) offer non-invasive recording with the best spatial and temporal resolution possible to date. For 3 months, we tracked the morphology and activity features of developing networks derived from a transgenic hiPSC line in which neurogenesis is inducible by neurogenic transcription factor overexpression. Our morphological data revealed large-scale structural changes from homogeneously distributed neurons in the first month to the formation of neuronal clusters over time. This led to a constant shift in position of neuronal cells and clusters on HD-MEAs and corresponding changes in spatial distribution of the network activity maps. Network activity appeared as scarce action potentials (APs), evolved as local bursts with longer duration and changed to network-wide synchronized bursts with higher frequencies but shorter duration over time, resembling the emerging burst features found in the developing human brain. Instantaneous firing rate data indicated that the fraction of fast spiking neurons (150-600 Hz) increases sharply after 63 days post induction (dpi). Inhibition of glutamatergic synapses erased burst features from network activity profiles and confirmed the presence of mature excitatory neurotransmission. The application of GABAergic receptor antagonists profoundly changed the bursting profile of the network at 120 dpi. This indicated a GABAergic switch from excitatory to inhibitory neurotransmission during circuit development and maturation. Our results suggested that an emerging GABAergic system at older culture ages is involved in regulating spontaneous network bursts. In conclusion, our data showed that long-term and continuous microscopy and electrophysiology readouts are crucial for a meaningful characterization of morphological and functional maturation in stem cell-derived human networks. Most importantly, assessing the level and duration of functional maturation is key to subject these human neuronal circuits on HD-MEAs for basic and biomedical applications.

7.
Chem Rev ; 122(18): 14842-14880, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36070858

RESUMO

The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.


Assuntos
Microfluídica , Engenharia Tecidual , Animais , Encéfalo , Humanos , Dispositivos Lab-On-A-Chip , Neurônios
8.
Methods Mol Biol ; 2501: 339-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857237

RESUMO

Spontaneous and optogenetically evoked activities of human induced pluripotent stem cell (hiPSC)-derived neurons can be assessed by patch clamp and multi-electrode array (MEA) electrophysiology. Optogenetic activation of these human neurons facilitates the characterization of their functional properties at the single neuron and circuit level. Here we showcase the preparation of hiPSC-derived neurons expressing optogenetic actuators, in vitro optogenetic stimulation and simultaneous functional recordings using patch clamp and MEA electrophysiology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Optogenética , Potenciais de Ação/fisiologia , Diferenciação Celular/genética , Células Cultivadas , Humanos , Neurônios
9.
Ophthalmologie ; 119(9): 910-918, 2022 Sep.
Artigo em Alemão | MEDLINE | ID: mdl-35536395

RESUMO

For many degenerative retinal diseases that progressively lead to blindness, no treatment options are available so far. In recent years, several innovative therapies have been experimentally explored, which are promising because they are independent of the genetic cause of the degenerative disease. One of these is optogenetics, which involves light-sensitive proteins that selectively act as ion channels or ion pumps to control the potential of the treated cell. Thus, these cells can be stimulated or inhibited by light, quasi functionally remote controlled. In this way artificial photoreceptors are induced from the remaining cells, which has already been successfully employed in animal experiments. This type of treatment is already being tested on patients and leads to an improvement in vision, but so far only data from one patient are available. The use of optogenetics additionally requires special eyeglasses to adapt the light impulses in adequate strength and wavelength for the respective optogenes. Another exciting approach is cell replacement therapy of retinal pigment epithelium (RPE) and photoreceptor cells to exchange degenerated cell material. This appears to be very successful for RPE cells in clinical trials. Obtaining human photoreceptors from stem cells is technically possible, but very laborious. The integration of the transplanted photoreceptors into the host retinal tissue also needs further optimization for broader clinical applications; however, both cell replacement and optogenetics approaches are promising, so that the translation from basic research into clinical application will be successful.


Assuntos
Oftalmologia , Doenças Retinianas , Animais , Humanos , Optogenética , Retina , Doenças Retinianas/genética , Epitélio Pigmentado da Retina/transplante
10.
Prog Retin Eye Res ; 90: 101065, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35562270

RESUMO

Neurodegenerative retinal diseases are a prime cause of blindness in industrialized countries. In many cases, there are no therapeutic treatments, although they are essential to improve patients' quality of life. A set of disease-causing genes, which primarily affect photoreceptors, has already been identified and is of major interest for developing gene therapies. Nevertheless, depending on the nature and the state of the disease, gene-independent strategies are needed. Various strategies to halt disease progression or maintain function of the retina are under research. These therapeutic interventions include neuroprotection, direct reprogramming of affected photoreceptors, the application of non-coding RNAs, the generation of artificial photoreceptors by optogenetics and cell replacement strategies. During recent years, major breakthroughs have been made such as the first optogenetic application to a blind patient whose visual function partially recovered by targeting retinal ganglion cells. Also, RPE cell transplantation therapies are under clinical investigation and show great promise to improve visual function in blind patients. These cells are generated from human stem cells. Similar therapies for replacing photoreceptors are extensively tested in pre-clinical models. This marks just the start of promising new cures taking advantage of developments in the areas of genetic engineering, optogenetics, and stem-cell research. In this review, we present the recent therapeutic advances of gene-independent approaches that are currently under clinical evaluation. Our main focus is on photoreceptors as these sensory cells are highly vulnerable to degenerative diseases, and are crucial for light detection.


Assuntos
Degeneração Retiniana , Cegueira/terapia , Terapia Genética , Humanos , Fotofobia/terapia , Qualidade de Vida , Retina , Degeneração Retiniana/genética , Degeneração Retiniana/terapia
11.
J Clin Invest ; 132(12)2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35482419

RESUMO

Once human photoreceptors die, they do not regenerate, thus, photoreceptor transplantation has emerged as a potential treatment approach for blinding diseases. Improvements in transplant organization, donor cell maturation, and synaptic connectivity to the host will be critical in advancing this technology for use in clinical practice. Unlike the unstructured grafts of prior cell-suspension transplantations into end-stage degeneration models, we describe the extensive incorporation of induced pluripotent stem cell (iPSC) retinal organoid-derived human photoreceptors into mice with cone dysfunction. This incorporative phenotype was validated in both cone-only as well as pan-photoreceptor transplantations. Rather than forming a glial barrier, Müller cells extended throughout the graft, even forming a series of adherens junctions between mouse and human cells, reminiscent of an outer limiting membrane. Donor-host interaction appeared to promote polarization as well as the development of morphological features critical for light detection, namely the formation of inner and well-stacked outer segments oriented toward the retinal pigment epithelium. Putative synapse formation and graft function were evident at both structural and electrophysiological levels. Overall, these results show that human photoreceptors interacted readily with a partially degenerated retina. Moreover, incorporation into the host retina appeared to be beneficial to graft maturation, polarization, and function.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Animais , Células Ependimogliais , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/metabolismo , Degeneração Retiniana/terapia
12.
Life Sci Alliance ; 5(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35418473

RESUMO

Neuronal networks derived from human induced pluripotent stem cells have been exploited widely for modeling neuronal circuits, neurological diseases, and drug screening. As these networks require extended culturing periods to functionally mature in vitro, most studies are based on immature networks. To obtain insights on long-term functional features, we improved a glia-neuron co-culture protocol within multi-electrode arrays, facilitating continuous assessment of electrical features in weekly intervals. By full-field optogenetic stimulation, we detected an earlier onset of neuronal firing and burst activity compared with spontaneous activity. Full-field stimulation enhanced the number of active neurons and their firing rates. Compared with full-field stimulation, which evoked synchronized activity across all neurons, holographic stimulation of individual neurons resulted in local activity. Single-cell holographic stimulation facilitated to trace propagating evoked activities of 400 individually stimulated neurons per multi-electrode array. Thereby, we revealed precise functional neuronal connectivity motifs. Holographic stimulation data over time showed increasing connection numbers and strength with culture age. This holographic stimulation setup has the potential to establish a profound functional testbed for in-depth analysis of human-induced pluripotent stem cell-derived neuronal networks.


Assuntos
Células-Tronco Pluripotentes Induzidas , Optogenética , Técnicas de Cocultura , Humanos , Neurônios
13.
Front Genome Ed ; 3: 715697, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34713262

RESUMO

Gene activation with the CRISPR-Cas system has great implications in studying gene function, controlling cellular behavior, and modulating disease progression. In this review, we survey recent studies on targeted gene activation and multiplexed screening for inducing neuronal differentiation using CRISPR-Cas transcriptional activation (CRISPRa) and open reading frame (ORF) expression. Critical technical parameters of CRISPRa and ORF-based strategies for neuronal programming are presented and discussed. In addition, recent progress on in vivo applications of CRISPRa to the nervous system are highlighted. Overall, CRISPRa represents a valuable addition to the experimental toolbox for neuronal cell-type programming.

14.
Cell Stem Cell ; 28(10): 1740-1757.e8, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34407456

RESUMO

During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.


Assuntos
Células-Tronco Pluripotentes Induzidas , Organoides , Diferenciação Celular , Desenvolvimento Embrionário , Humanos , Organogênese , Prosencéfalo
15.
Comput Struct Biotechnol J ; 19: 961-969, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613863

RESUMO

The advent of single-cell sequencing started a new era of transcriptomic and genomic research, advancing our knowledge of the cellular heterogeneity and dynamics. Cell type annotation is a crucial step in analyzing single-cell RNA sequencing data, yet manual annotation is time-consuming and partially subjective. As an alternative, tools have been developed for automatic cell type identification. Different strategies have emerged to ultimately associate gene expression profiles of single cells with a cell type either by using curated marker gene databases, correlating reference expression data, or transferring labels by supervised classification. In this review, we present an overview of the available tools and the underlying approaches to perform automated cell type annotations on scRNA-seq data.

16.
Nat Biotechnol ; 39(4): 510-519, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33257861

RESUMO

Human pluripotent stem cells (hPSCs) offer an unprecedented opportunity to model diverse cell types and tissues. To enable systematic exploration of the programming landscape mediated by transcription factors (TFs), we present the Human TFome, a comprehensive library containing 1,564 TF genes and 1,732 TF splice isoforms. By screening the library in three hPSC lines, we discovered 290 TFs, including 241 that were previously unreported, that induce differentiation in 4 days without alteration of external soluble or biomechanical cues. We used four of the hits to program hPSCs into neurons, fibroblasts, oligodendrocytes and vascular endothelial-like cells that have molecular and functional similarity to primary cells. Our cell-autonomous approach enabled parallel programming of hPSCs into multiple cell types simultaneously. We also demonstrated orthogonal programming by including oligodendrocyte-inducible hPSCs with unmodified hPSCs to generate cerebral organoids, which expedited in situ myelination. Large-scale combinatorial screening of the Human TFome will complement other strategies for cell engineering based on developmental biology and computational systems biology.


Assuntos
Técnicas de Reprogramação Celular/métodos , Oligodendroglia/citologia , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Processamento Alternativo , Diferenciação Celular , Engenharia Celular , Células Cultivadas , Técnicas de Cocultura , Humanos , Oligodendroglia/metabolismo , Células-Tronco Pluripotentes/metabolismo , Biologia de Sistemas
17.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187246

RESUMO

Retinal degenerative diseases lead to irreversible blindness. Decades of research into the cellular and molecular mechanisms of retinal diseases, using either animal models or human cell-derived 2D systems, facilitated the development of several therapeutic interventions. Recently, human stem cell-derived 3D retinal organoids have been developed. These self-organizing 3D organ systems have shown to recapitulate the in vivo human retinogenesis resulting in morphological and functionally similar retinal cell types in vitro. In less than a decade, retinal organoids have assisted in modeling several retinal diseases that were rather difficult to mimic in rodent models. Retinal organoids are also considered as a photoreceptor source for cell transplantation therapies to counteract blindness. Here, we highlight the development and field's improvements of retinal organoids and discuss their application aspects as human disease models, pharmaceutical testbeds, and cell sources for transplantations.


Assuntos
Organoides/citologia , Organoides/fisiologia , Retina/citologia , Retina/fisiologia , Visão Ocular/fisiologia , Animais , Pesquisa Biomédica , Transplante de Células/métodos , Humanos , Organogênese/fisiologia , Degeneração Retiniana/patologia , Células-Tronco/citologia , Células-Tronco/fisiologia
18.
PLoS One ; 15(10): e0240523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33057419

RESUMO

Biological and medical sciences are increasingly acknowledging the significance of gene co-expression-networks for investigating complex-systems, phenotypes or diseases. Typically, complex phenotypes are investigated under varying conditions. While approaches for comparing nodes and links in two networks exist, almost no methods for the comparison of multiple networks are available and-to best of our knowledge-no comparative method allows for whole transcriptomic network analysis. However, it is the aim of many studies to compare networks of different conditions, for example, tissues, diseases, treatments, time points, or species. Here we present a method for the systematic comparison of an unlimited number of networks, with unlimited number of transcripts: Co-expression Differential Network Analysis (CoDiNA). In particular, CoDiNA detects links and nodes that are common, specific or different among the networks. We developed a statistical framework to normalize between these different categories of common or changed network links and nodes, resulting in a comprehensive network analysis method, more sophisticated than simply comparing the presence or absence of network nodes. Applying CoDiNA to a neurogenesis study we identified candidate genes involved in neuronal differentiation. We experimentally validated one candidate, demonstrating that its overexpression resulted in a significant disturbance in the underlying gene regulatory network of neurogenesis. Using clinical studies, we compared whole transcriptome co-expression networks from individuals with or without HIV and active tuberculosis (TB) and detected signature genes specific to HIV. Furthermore, analyzing multiple cancer transcription factor (TF) networks, we identified common and distinct features for particular cancer types. These CoDiNA applications demonstrate the successful detection of genes associated with specific phenotypes. Moreover, CoDiNA can also be used for comparing other types of undirected networks, for example, metabolic, protein-protein interaction, ecological and psychometric networks. CoDiNA is publicly available as an R package in CRAN (https://CRAN.R-project.org/package=CoDiNA).


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , Infecções por HIV/genética , Neoplasias/genética , Neurônios/metabolismo , Software , Transcriptoma , Algoritmos , HIV/isolamento & purificação , Infecções por HIV/virologia , Humanos , Neurogênese , Neurônios/citologia , Fenótipo
19.
Sci Adv ; 6(35): eaba3200, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923624

RESUMO

In the first days of embryogenesis, transposable element-embedded regulatory sequences (TEeRS) are silenced by Kruppel-associated box (KRAB) zinc finger proteins (KZFPs). Many TEeRS are subsequently co-opted in transcription networks, but how KZFPs influence this process is largely unknown. We identify ZNF417 and ZNF587 as primate-specific KZFPs repressing HERVK (human endogenous retrovirus K) and SVA (SINE-VNTR-Alu) integrants in human embryonic stem cells (ESCs). Expressed in specific regions of the human developing and adult brain, ZNF417/587 keep controlling TEeRS in ESC-derived neurons and brain organoids, secondarily influencing the differentiation and neurotransmission profile of neurons and preventing the induction of neurotoxic retroviral proteins and an interferon-like response. Thus, evolutionarily recent KZFPs and their TE targets partner up to influence human neuronal differentiation and physiology.


Assuntos
Retroelementos , Dedos de Zinco , Animais , Expressão Gênica , Humanos , Neurônios , Primatas/genética , Retroelementos/genética , Dedos de Zinco/genética
20.
Front Neurol ; 11: 524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655481

RESUMO

Over the past two decades, our understanding of Parkinson's disease (PD) has been gleaned from the discoveries made in familial and/or sporadic forms of PD in the Caucasian population. The transferability and the clinical utility of genetic discoveries to other ethnically diverse populations are unknown. The Indian population has been under-represented in PD research. The Genetic Architecture of PD in India (GAP-India) project aims to develop one of the largest clinical/genomic bio-bank for PD in India. Specifically, GAP-India project aims to: (1) develop a pan-Indian deeply phenotyped clinical repository of Indian PD patients; (2) perform whole-genome sequencing in 500 PD samples to catalog Indian genetic variability and to develop an Indian PD map for the scientific community; (3) perform a genome-wide association study to identify novel loci for PD and (4) develop a user-friendly web-portal to disseminate results for the scientific community. Our "hub-spoke" model follows an integrative approach to develop a pan-Indian outreach to develop a comprehensive cohort for PD research in India. The alignment of standard operating procedures for recruiting patients and collecting biospecimens with international standards ensures harmonization of data/bio-specimen collection at the beginning and also ensures stringent quality control parameters for sample processing. Data sharing and protection policies follow the guidelines established by local and national authorities.We are currently in the recruitment phase targeting recruitment of 10,200 PD patients and 10,200 healthy volunteers by the end of 2020. GAP-India project after its completion will fill a critical gap that exists in PD research and will contribute a comprehensive genetic catalog of the Indian PD population to identify novel targets for PD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...